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Klystron Noise

In my paper “Crystal Checker for Bal-
anced Mixers”1 I gave data on the excess
noise of typical klystrons. Since that paper
was prepared, further data has been ob-
tained that permits au expansion of Fig. 6.
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Fig. l—30.mc excess noise of typical klystrons. (Same
as Fig. 6 of original paper except for addltmn of
2K28 data.)
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Fig. 2—30-mc excess noise of typical klystrons
multiplied by the efficiency ratio qlTm.

Measurements were made on a 2K28 at
2800 mc. Fig. 1 is a revision of Fig. 6 to show
the new data. It is seen that the new points
fall below the interpolated curves given

1 Tram. I. R. E., vol. MTT-2, Dp. 10–15; July, 195.!.

originally, although the relative vertical
spacings are about the same as those pre-
dicted by interpolation. The data in Fig. 1
seem to fit the empirical relationship

fN–I=K—t
7

where N — 1 is the excess noise power at a

particular intermediate frequency, K is a
constant, and ~ is the efficiency of convert-

ing beam power to cw power.
If one arbitrarily multiplies the data in

Fig. 1 by the ratio of the efficiency of the
particular klystron to that of the 723A/B,
the nearly linear relationship of Fig. 2 is ob-
tained.

If the empirical relation is valid, Fig. 2
can be used to predict the approximate per-

formance of other klystrons by spotting the
operating frequency on the figure, or an ex-
tension thereof, and multiplying by the ra-

tio of efficiencies, 77723/r7.
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A Practical Method of Locating

Waveguide Discontinuities

In the maintenance of ultra-high fre-

quency equipments utilizing waveguide, one

of the more difficult troubles to diagnose and

correct is that of the high standing wave ra-
tio. The question always arises as to whether

the antenna or the waveguide is at fault.
Sometimes a visual inspection of the trans-
mission system will disclose the difficulty.
Too often, however, the physical layout of
the system makes a close inspection imprac-
tical. The construction of many antennas,
also, does not permit an examination of the
radio frequency components without a com-
plex mechanical disassembly, costly in terms

of man-hours.
It is desirable, therefore, to determine the

approximate location of the discontinuity
electromcally. On those equipments having a

continuously variable-frequency transmit-
ter, a frequency measuring device, and a

waveguide probe for sampling the standing
wave, this can be done quite easily. On
other equipments these features can be simu-
lated by installing, at the transmitter end
of the line, a waveguide section equipped
with probes for inserting the signal of a vari-
able-frequency, calibrated, test oscillator

and for sampling the standing wave.
The usual analysis of a standing wave re-

quires the movement of the probe along the
slot ted wa~,eguide; the detected voltage pro-
gresses through maximum and minimum

values in accordance with the standing wave
pattern.

If, however, the probe is left at a fixed

position and the frequency is varied, the
standing wa~,e will move past the probe, its

detected \-oltage rising and falling in the
same manner as the guide wavelength
changes with frequency. It will be shown
that the frequency change necessary to move
the standing wave a specific number of wave-

lengths is a function of the distance from the
probe to the discontinuity causing the stand-

ing wave.

If we let N equal the number of half-guide
wavelengths between the probe and the dis-

continuity, and let L represeut the physical
dist ante from the probe to the discontinuity,
then

(1)

Now, if the operating frequency is increased
sufficiently to bring one more half-guide

wavelength into the distance, L, then

(2)

Subtracting (1) from (2) and rearranging, we

have

(3)

In making use of this phenomenon to lo-
cate a serious discontinuity in a waveguide
transmission system, we must determine the

guide wavelengths that will give us two suc-

cessive maxima (or minima) of the standing

wave at a fixed probe location, as the fre-
quency is varied.

The guide wavelength is a function of fre-

quency which can be evaluated from the
identity

in which
c is free space velocity of propagation,

f is operating frequency,
b is wide inside dimension of the wave-

guide.
Thus, we are approaching a practical so-

lution to the problem, since the frequencies

required to give two successive maxima (or
minima) of the standing wave are measura-

ble. Once the frequencies are determined,
they are converted to wavelengths in (4); the

wavelengths, in turn, are used in (3) to give
the distance from the probe to the discon-
tinuity.

In practice, frequency is measured with a
calibrated echo box or wave meter. Standing
wave voltage is measured with a vacuum
tube vo~t meter equipped with radio fre-

quency probe. (Calibration of this instru-
ment is not necessary since only relative
readings of \,oltage are required to establish
the maximum and minimum lpositions of the
stand ing wave.) If possible, the detector of
the vacuum tube voltmeter should be con-

(Cent’d o,, P. 46)
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(Cent’d from P. 45)

netted directly to the waveguide probe in

order to minimize the effect of standing
waves between the probe and the detector.

Enough readings of maximum and mini-

mum voltage and their respective frequen-

cies are taken to establish the cyclic recur-

rence of the standing wave. Computation of
L for several sets of data gives a check on the
accuracy of measurement as well as a means
of ‘{averaging out” any discrepancies.

This technique is subject to several limi-

tations, among them the following:

Accuracy of frequency measurement—For

accurate results, the frequency must be
measured exactly. This is” particularly true

on long waveguide runs (L) where the change
in guide wavelength between standing wave

maxima is very small. Since exact frequency
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measurement with field equipment is very

difficult, this is a primary source of error.
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